A Generalized Convexity and Inequalities Involving the Unified Mittag–Leffler Function
نویسندگان
چکیده
This article aims to obtain inequalities containing the unified Mittag–Leffler function which give bounds of integral operators for a generalized convexity. These findings provide generalizations and refinements many inequalities. By setting values monotone functions, it is possible reproduce results classical convexities. The Hadamard-type several classes related convex functions are identified in remarks, some them also presented last section.
منابع مشابه
Generalized Convexity and Integral Inequalities
In this paper, we consider a very useful and significant class of convex sets and convex functions that is relative convex sets and relative convex functions which was introduced and studied by Noor [20]. Several new inequalities of Hermite-Hadamard type for relative convex functions are established using different approaches. We also introduce relative h-convex functions and is shown that rela...
متن کاملA Function Involving Gamma Function and Having Logarithmically Absolute Convexity
In the paper, the logarithmically complete monotonicity, logarithmically absolute monotonicity and logarithmically absolute convexity of the function [Γ(1+tx)] [Γ(1+sx)]t for x, s, t ∈ R such that 1 + sx > 0 and 1 + tx > 0 with s 6= t are verified, some known results are generalized.
متن کاملInequalities Involving Generalized Bessel Functions
Let up denote the normalized, generalized Bessel function of order p which depends on two parameters b and c and let λp(x) = up(x), x ≥ 0. It is proven that under some conditions imposed on p, b, and c the Askey inequality holds true for the function λp , i.e., that λp(x) +λp(y) ≤ 1 +λp(z), where x, y ≥ 0 and z = x + y. The lower and upper bounds for the function λp are also established.
متن کاملMonotonicity, convexity, and inequalities for the generalized elliptic integrals
We provide the monotonicity and convexity properties and sharp bounds for the generalized elliptic integrals [Formula: see text] and [Formula: see text] depending on a parameter [Formula: see text], which contains an earlier result in the particular case [Formula: see text].
متن کاملA Unified Hybrid Iterative Method for Solving Variational Inequalities Involving Generalized Pseudocontractive Mappings
We study in this paper the existence and approximation of solutions of variational inequalities involving generalized pseudo-contractive mappings in Banach spaces. The convergence analysis of a proposed hybrid iterative method for approximating common zeros or fixed points of a possibly infinitely countable or uncountable family of such operators will be conducted within the conceptual framewor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2023
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms12080795